metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[μ_2 -aqua-aqua- μ_4 -pyridine-2,4-dicarboxylato-strontium]

Janet Soleimannejad,^a* Yaghoub Mohammadzadeh,^a Hossein Aghabozorg^b and Zohreh Derikvand^c

^aDepartment of Chemistry, Faculty of Science, Ilam University, Ilam, Iran, ^bFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and ^cDepartment of Chemistry, Faculty of Science, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran

Correspondence e-mail: janet_soleimannejad@yahoo.com

Received 8 June 2009; accepted 8 July 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.030; w*R* factor = 0.070; data-to-parameter ratio = 17.1.

In the title polymeric complex, $[Sr(C_7H_3NO_4)(H_2O)_2]_n$, the Sr^{II} atom is eight-coordinated by four O atoms and one N atom of four pyridine-2,4-dicarboxylate (py-2,4-dc) ligands and three O atoms of three coordinated water molecules in a dodecahedral geometry. These units are connected *via* the carboxylate O atoms and water molecules, building polymeric layers parallel to (100). In the crystal structure, non-covalent interactions consisting of O-H···O hydrogen bonds and π - π stacking interactions [centroid–centroid distances = 3.862 (17) and 3.749 (17) Å] connect the various components, forming a three-dimensional structure.

Related literature

For related structures, see: Aghabozorg, Manteghi & Sheshmani (2008); Aghabozorg, Nemati *et al.* (2008); Liang (2008); Soleimannejad *et al.* (2007).

Experimental

Crystal data

 $[Sr(C_7H_3NO_4)(H_2O)_2]$ $M_r = 288.76$ Monoclinic, $P2_1/c$ a = 6.8860 (5) Å b = 19.7801 (13) Å c = 6.5642 (4) Å $\beta = 91.892$ (5)°

Data collection

Bruker SMART 1000 diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.560, T_{max} = 0.752$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	136 parameters
$wR(F^2) = 0.070$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.76 \ {\rm e} \ {\rm \AA}^{-3}$
2321 reflections	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$

 $V = 893.59 (10) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 6.04 \text{ mm}^{-1}$

 $0.08 \times 0.05 \times 0.05 \; \mathrm{mm}$

6370 measured reflections

2321 independent reflections

1795 reflections with $I > 2\sigma(I)$

Z = 4

T = 296 K

 $R_{\rm int} = 0.042$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H5B\cdots O4^{i}$	0.85	1.95	2.759 (3)	158
$O5-H5A\cdots O4^{ii}$	0.85	1.92	2.730 (3)	160
$O5-H5A\cdots O3^{ii}$	0.85	2.37	3.051 (3)	137
$O6-H6B\cdots O3^{iii}$	0.85	2.12	2.958 (3)	169
$O6-H6A\cdots O4^{iv}$	0.85	2.10	2.833 (3)	144
Symmetry codes: (i) $-x + 3, -y$	z + 1, -z - 1;	(ii) $-x + 3, y +$	$\frac{1}{2}, -z - \frac{1}{2};$ (iii)

Symmetry codes: (1) -x + 3, -y + 1, -z - 1; (1) $-x + 3, y + \frac{1}{2}, -z - \frac{1}{2};$ (11) -x + 2, -y + 1, -z; (iv) $-x + 2, y + \frac{1}{2}, -z - \frac{1}{2}.$

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2167).

References

Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.

Aghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M. & Daneshvar, S. (2008). Acta Cryst. E64, m376.

Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Liang, P. (2008). Acta Cryst. E64, 043.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Soleimannejad, J., Aghabozorg, H., Hooshmand, S. & Adams, H. (2007). Acta Cryst. E63, m3089–m3090. supplementary materials

Acta Cryst. (2009). E65, m922 [doi:10.1107/S160053680902683X]

Poly[μ_2 -aqua-aqua- μ_4 -pyridine-2,4-dicarboxylato-strontium]

J. Soleimannejad, Y. Mohammadzadeh, H. Aghabozorg and Z. Derikvand

Comment

We have previously reported two complexes of Sr^{II} with pyridine-3,5-dicarpoxylic and pyridine-2,6-dicarboxylic acid $[Sr(C_7H_3NO_4)(H_2O)_4]_n$ (Aghabozorg *et al.*, 2008; Aghabozorg, Manteghi *et al.*, 2008) and $(C_{10}H_{10}N_2)[Sr(C_7H_3NO_4)_2(H_2O)_3].3H_2O$ (Soleimannejad *et al.*, 2007). The co-crystal of this acid has been published $C_7H_5NO_4.C_3H_7NO_3$ (Liang, 2008).

Here we repot on the crystal structure of the title polymeric complex which is a two-dimensional polymer (Fig. 1). The Sr–O distances are in the range of 2.511 (2)–2.688 (2) Å, and the bond angles and bond distances around Sr^{II} atom show that the coordination environment of Sr^{II} atom is distored dodecahedron.

The carboxylate groups from py-2,4-dc (where py = pyridine and dc = dicarboxylate) link four Sr^{II} centers by four O atoms (O1ⁱ, O1ⁱⁱ, O2 and O3), [symmetry cods: (i) x, y, 1 + z, (ii), x, 1.5 - y, 1/2 + z.] and one N1 atom result in the formation of two-dimensional polymeric chain in the crystal structure. There are a number of O–H…O hydrogen bonds with distances ranging 2.759 (3) Å to 3.052 (3) Å (Table 1). In the crystal structure there are many pores that can be used for storage of gas and elimination of guest molecules. Noncovalent interactions consist of hydrogen bonding and π - π stacking interactions with centroied-centroied distances [3.862 (17) Å and 3.749 (17) Å] connect the various components to form a supramolecular structure (Fig. 2).

Experimental

An aqueous solution of 4,4'-bipyridine (100 mg, 2 mmol) and pyridine-2,4-dicarboxylic acid (53 mg, 1 mmol) was refluxed for an hour. A solution of $Sr(NO_3)_2$ (134 mg, 0.5 mmol) in water (3 ml) was added to the solution and refluxed for an hour. Colorless crystals were obtained after one week by the slow evaporation of the solvent at room temperature.

Refinement

The H atoms of the water molecule these were located from low theta Fourier maps and all H-atoms were included in calculated positions and refined by a constrained rigid type geometry in a riding mode with O—H = 0.85 Å and C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(\text{parent O or C-atom})$.

Figures

Fig. 1. The molecular structure of polymeric complex, $[Sr(C_7H_3NO_4)(H_2O)_2]_n$. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (A) x, y, z - 1; (B) x, -y + 3/2, z - 1/2; (C) x, -y + 3/2, z + 1/2; (D) -x + 3, -y + 1, -z.

Fig. 2. Crystal packing of the title complex, dashed lines indicate hydrogen bonds.

 $F_{000} = 568$

 $\theta = 4.4-28.4^{\circ}$ $\mu = 6.04 \text{ mm}^{-1}$ T = 296 KPlate, colourless $0.08 \times 0.05 \times 0.05 \text{ mm}$

 $D_{\rm x} = 2.146 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 1756 reflections

$Poly[\mu_2-aqua-aqua-\mu_4-pyridine-2,4-dicarboxylato-strontium]$

Crystal data
[Sr(C ₇ H ₃ NO ₄)(H ₂ O) ₂]
$M_r = 288.76$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 6.8860 (5) Å
b = 19.7801 (13) Å
c = 6.5642 (4) Å
$\beta = 91.892 (5)^{\circ}$
$V = 893.59 (10) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART 1000 diffractometer	2321 independent reflections
Radiation source: fine-focus sealed tube	1795 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
Detector resolution: 100 pixels mm ⁻¹	$\theta_{\text{max}} = 28.9^{\circ}$
T = 296 K	$\theta_{\min} = 4.1^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -22 \rightarrow 26$
$T_{\min} = 0.560, \ T_{\max} = 0.752$	$l = -8 \longrightarrow 8$
6370 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^{2} > 2\sigma(F^{2})] = 0.030$ H-atom parameters constrained $wR(F^{2}) = 0.070$ H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0326P)^{2} + 0.0723P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ S = 1.03 $(\Delta/\sigma)_{max} = 0.001$ 2321 reflections $\Delta\rho_{max} = 0.76 \text{ e } \text{Å}^{-3}$ 136 parameters $\Delta\rho_{min} = -0.58 \text{ e } \text{Å}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coord	inates and isotropic o	r equivalent isotropic	displacement	parameters ((A^2))
			1			

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Sr1	1.41849 (4)	0.689568 (14)	-0.36705 (4)	0.00741 (8)
N1	1.2631 (4)	0.57709 (13)	-0.2058 (4)	0.0096 (5)
01	1.3664 (3)	0.68543 (10)	0.0213 (3)	0.0094 (4)
O2	1.3348 (3)	0.62646 (11)	0.3099 (3)	0.0127 (5)
O3	1.2609 (3)	0.37523 (11)	0.2554 (3)	0.0112 (5)
O4	1.1524 (3)	0.33289 (11)	-0.0422 (3)	0.0103 (4)
O5	1.6546 (3)	0.72846 (10)	-0.6459 (3)	0.0103 (4)
H5B	1.7139	0.7007	-0.7206	0.012*
H5A	1.7156	0.7648	-0.6172	0.012*
O6	1.0607 (3)	0.71224 (12)	-0.3855 (4)	0.0172 (5)
H6B	0.9789	0.6826	-0.3505	0.021*
H6A	1.0167	0.7507	-0.3525	0.021*
C1	1.3325 (4)	0.63210 (15)	0.1201 (5)	0.0088 (6)
C2	1.2865 (4)	0.56895 (15)	-0.0027 (4)	0.0085 (6)
C3	1.2705 (4)	0.50621 (15)	0.0904 (5)	0.0085 (6)
H3	1.2910	0.5020	0.2306	0.010*
C4	1.2238 (4)	0.45000 (15)	-0.0267 (5)	0.0084 (6)
C5	1.2108 (4)	0.38080 (15)	0.0705 (5)	0.0092 (6)
C6	1.1917 (5)	0.45863 (15)	-0.2358 (5)	0.0106 (6)
H6	1.1553	0.4224	-0.3187	0.013*
C7	1.2152 (5)	0.52224 (16)	-0.3165 (5)	0.0124 (6)
H7	1.1968	0.5275	-0.4566	0.015*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Sr1	0.01054 (14)	0.00559 (13)	0.00613 (13)	-0.00023 (12)	0.00104 (9)	0.00023 (12)	
N1	0.0119 (13)	0.0086 (13)	0.0083 (12)	-0.0014 (10)	0.0002 (10)	0.0000 (10)	
O1	0.0152 (11)	0.0050 (10)	0.0082 (10)	-0.0018 (9)	0.0013 (8)	-0.0012 (9)	
O2	0.0198 (12)	0.0098 (11)	0.0086 (11)	-0.0035 (9)	0.0029 (9)	-0.0005 (9)	
O3	0.0152 (12)	0.0079 (11)	0.0107 (11)	0.0003 (9)	0.0013 (9)	0.0028 (9)	
O4	0.0132 (11)	0.0072 (10)	0.0107 (11)	-0.0008 (8)	0.0013 (9)	-0.0009 (8)	
05	0.0139 (11)	0.0066 (10)	0.0104 (11)	-0.0004 (9)	0.0015 (9)	-0.0028 (8)	
06	0.0136 (12)	0.0105 (11)	0.0277 (14)	0.0013 (9)	0.0050 (10)	0.0045 (10)	
C1	0.0102 (15)	0.0073 (14)	0.0089 (14)	0.0007 (12)	0.0013 (11)	-0.0030 (12)	
C2	0.0086 (14)	0.0099 (14)	0.0071 (14)	-0.0008 (12)	0.0025 (11)	-0.0002 (12)	
C3	0.0107 (15)	0.0082 (14)	0.0065 (14)	0.0010 (12)	0.0010 (11)	0.0018 (11)	
C4	0.0083 (14)	0.0044 (13)	0.0128 (15)	-0.0004 (11)	0.0025 (11)	0.0008 (11)	
C5	0.0071 (14)	0.0078 (14)	0.0131 (15)	0.0026 (11)	0.0065 (11)	0.0029 (12)	
C6	0.0136 (15)	0.0076 (15)	0.0108 (15)	0.0006 (12)	0.0015 (12)	-0.0025 (12)	
C/	0.0201 (17)	0.0097 (15)	0.00/3(15)	0.0001 (13)	0.0001 (12)	-0.0003 (12)	
Geometric para	meters (Å, °)						
Sr106		2.503 (2)	04—0	C5	1.20	60 (4)	
Sr1—O2 ⁱ		2.511 (2)	05—5	Sr1 ⁱⁱ	2.68	38 (2)	
Sr1—O1		2.588 (2)	O5—I	H5B	0.8500		
Sr1-O1 ⁱⁱ		2.600 (2)	O5—I	O5—H5A		0.8501	
Sr1—O5		2.604 (2)	O6—I	H6B	0.85	500	
Sr1-O3 ⁱⁱⁱ		2.636 (2)	O6—1	H6A	0.85	500	
Sr1-05 ^{iv}		2.688 (2)	C1—0	22	1.51	4 (4)	
Sr1—N1		2.700 (3)	C2—0	23	1.38	39 (4)	
N1—C7		1.341 (4)	С3—(C4	1.38	34 (4)	
N1-C2		1.347 (4)	C3—I	-13	0.93	300	
O1—C1		1.264 (3)	C4—0	26	1.39	94 (4)	
O1—Sr1 ^{iv}		2.600 (2)	C4—0	25	1.51	4 (4)	
O2—C1		1.250 (4)	С6—С	C7	1.37	77 (4)	
O2—Sr1 ^v		2.511 (2)	C6—I	H6	0.93	300	
O3—C5		1.256 (4)	C7—I	47	0.93	300	
O3—Sr1 ⁱⁱⁱ		2.636 (2)					
06—Sr1—O2 ⁱ		81.38 (8)	O5 ^{iv} -	–Sr1—Sr1 ⁱⁱ	93.7	74 (4)	
O6—Sr1—O1		83.40 (7)	N1—5	Sr1—Sr1 ⁱⁱ	144	.35 (5)	
O2 ⁱ —Sr1—O1		141.34 (7)	Sr1 ^{iv} -	–Sr1–Sr1 ⁱⁱ	107	.860 (13)	
06—Sr1—O1 ⁱⁱ		71.92 (7)	C7—1	N1—C2	117	.3 (3)	
$O2^{i}$ —Sr1—O1 ⁱⁱ		102.07 (7)	C7—1	N1—Sr1	123	.20 (19)	
O1—Sr1—O1 ⁱⁱ		106.58 (6)	C2—1	N1—Sr1	116	.78 (19)	
O6—Sr1—O5		123.32 (7)	C1—0	D1—Sr1	124	.46 (18)	
O2 ⁱ —Sr1—O5		71.61 (7)	C1—0	D1—Sr1 ^{iv}	132	.46 (18)	

O1—Sr1—O5	144.29 (7)	Sr1—O1—Sr1 ^{iv}	103.01 (7)
O1 ⁱⁱ —Sr1—O5	66.71 (7)	$C1$ — $O2$ — $Sr1^{v}$	142.38 (19)
O6—Sr1—O3 ⁱⁱⁱ	156.15 (7)	C5—O3—Sr1 ⁱⁱⁱ	120.82 (19)
O2 ⁱ —Sr1—O3 ⁱⁱⁱ	99.20 (7)	Sr1—O5—Sr1 ⁱⁱ	100.21 (7)
O1—Sr1—O3 ⁱⁱⁱ	81.53 (7)	Sr1—O5—H5B	122.5
O1 ⁱⁱ —Sr1—O3 ⁱⁱⁱ	130.33 (7)	Sr1 ⁱⁱ —O5—H5B	111.9
O5—Sr1—O3 ⁱⁱⁱ	78.61 (7)	Sr1—O5—H5A	114.2
O6—Sr1—O5 ^{iv}	119.66 (7)	Sr1 ⁱⁱ —O5—H5A	84.0
O2 ⁱ —Sr1—O5 ^{iv}	150.91 (7)	H5B—O5—H5A	115.5
O1—Sr1—O5 ^{iv}	65.67 (6)	Sr1—O6—H6B	121.5
$O1^{ii}$ —Sr1— $O5^{iv}$	69.75 (6)	Sr1—O6—H6A	120.4
O5—Sr1—O5 ^{iv}	79.68 (5)	H6B—O6—H6A	107.7
O3 ⁱⁱⁱ —Sr1—O5 ^{iv}	69.94 (7)	O2—C1—O1	126.1 (3)
O6—Sr1—N1	76.37 (8)	O2—C1—C2	116.9 (3)
O2 ⁱ —Sr1—N1	80.71 (7)	O1—C1—C2	117.0 (2)
O1—Sr1—N1	61.18 (7)	N1—C2—C3	122.2 (3)
O1 ⁱⁱ —Sr1—N1	147.27 (7)	N1—C2—C1	116.4 (3)
O5—Sr1—N1	141.60 (7)	C3—C2—C1	121.4 (3)
O3 ⁱⁱⁱ —Sr1—N1	80.18 (7)	C4—C3—C2	119.6 (3)
O5 ^{iv} —Sr1—N1	121.72 (7)	C4—C3—H3	120.2
O6—Sr1—Sr1 ^{iv}	84.69 (6)	C2—C3—H3	120.2
O2 ⁱ —Sr1—Sr1 ^{iv}	165.72 (5)	C3—C4—C6	118.4 (3)
O1—Sr1—Sr1 ^{iv}	38.61 (4)	C3—C4—C5	120.5 (3)
O1 ⁱⁱ —Sr1—Sr1 ^{iv}	70.38 (5)	C6—C4—C5	121.1 (3)
O5—Sr1—Sr1 ^{iv}	114.26 (5)	O3—C5—O4	125.0 (3)
O3 ⁱⁱⁱ —Sr1—Sr1 ^{iv}	94.81 (5)	O3—C5—C4	117.9 (3)
O5 ^{iv} —Sr1—Sr1 ^{iv}	39.14 (5)	O4—C5—C4	117.0 (3)
N1—Sr1—Sr1 ^{iv}	99.07 (5)	C7—C6—C4	118.3 (3)
O6—Sr1—Sr1 ⁱⁱ	83.20 (5)	С7—С6—Н6	120.9
O2 ⁱ —Sr1—Sr1 ⁱⁱ	67.43 (5)	С4—С6—Н6	120.9
O1—Sr1—Sr1 ⁱⁱ	144.96 (5)	N1—C7—C6	124.1 (3)
O1 ⁱⁱ —Sr1—Sr1 ⁱⁱ	38.38 (5)	N1—C7—H7	117.9
O5—Sr1—Sr1 ⁱⁱ	40.65 (5)	С6—С7—Н7	117.9
O3 ⁱⁱⁱ —Sr1—Sr1 ⁱⁱ	119.25 (5)		
O6—Sr1—N1—C7	91.7 (2)	O2 ⁱ —Sr1—O5—Sr1 ⁱⁱ	76.49 (7)
O2 ⁱ —Sr1—N1—C7	8.4 (2)	O1—Sr1—O5—Sr1 ⁱⁱ	-122.21 (10)
O1—Sr1—N1—C7	-178.4 (3)	O1 ⁱⁱ —Sr1—O5—Sr1 ⁱⁱ	-36.03 (6)
O1 ⁱⁱ —Sr1—N1—C7	106.3 (2)	O3 ⁱⁱⁱ —Sr1—O5—Sr1 ⁱⁱ	-179.69 (8)
O5—Sr1—N1—C7	-35.5 (3)	O5 ^{iv} —Sr1—O5—Sr1 ⁱⁱ	-108.29 (10)
O3 ⁱⁱⁱ —Sr1—N1—C7	-92.7 (2)	N1—Sr1—O5—Sr1 ⁱⁱ	122.61 (10)
O5 ^{iv} —Sr1—N1—C7	-151.7 (2)	Sr1 ^{iv} —Sr1—O5—Sr1 ⁱⁱ	-89.51 (6)

supplementary materials

Sr1 ^{iv} —Sr1—N1—C7	173.9 (2)	Sr1 ^v —O2—C1—O1	-7.3 (6)
Sr1 ⁱⁱ —Sr1—N1—C7	34.8 (3)	Sr1 ^v	172.1 (2)
O6—Sr1—N1—C2	-107.5 (2)	Sr1—O1—C1—O2	168.8 (2)
$O2^{i}$ —Sr1—N1—C2	169.2 (2)	Sr1 ^{iv} —O1—C1—O2	-7.8 (5)
O1—Sr1—N1—C2	-17.58 (19)	Sr1—O1—C1—C2	-10.6 (4)
O1 ⁱⁱ —Sr1—N1—C2	-92.9 (2)	$Sr1^{iv}$ —O1—C1—C2	172.84 (18)
O5—Sr1—N1—C2	125.3 (2)	C7—N1—C2—C3	2.7 (4)
O3 ⁱⁱⁱ —Sr1—N1—C2	68.1 (2)	Sr1—N1—C2—C3	-159.3 (2)
O5 ^{iv} —Sr1—N1—C2	9.2 (2)	C7—N1—C2—C1	-177.6 (3)
Sr1 ^{iv} —Sr1—N1—C2	-25.3 (2)	Sr1—N1—C2—C1	20.4 (3)
Sr1 ⁱⁱ —Sr1—N1—C2	-164.33 (16)	O2—C1—C2—N1	172.9 (3)
O6—Sr1—O1—C1	92.9 (2)	O1—C1—C2—N1	-7.7 (4)
$O2^{i}$ —Sr1—O1—C1	25.6 (3)	O2—C1—C2—C3	-7.4 (4)
O1 ⁱⁱ —Sr1—O1—C1	161.74 (19)	O1—C1—C2—C3	172.1 (3)
O5—Sr1—O1—C1	-125.3 (2)	N1—C2—C3—C4	-1.8 (4)
03 ⁱⁱⁱ —Sr1—O1—C1	-68.6 (2)	C1—C2—C3—C4	178.5 (3)
O5 ^{iv} —Sr1—O1—C1	-140.3 (2)	C2—C3—C4—C6	-0.8 (4)
N1—Sr1—O1—C1	14.8 (2)	C2—C3—C4—C5	178.4 (3)
Sr1 ^{iv} —Sr1—O1—C1	-177.4 (3)	Sr1 ⁱⁱⁱ —O3—C5—O4	69.3 (4)
Sr1 ⁱⁱ —Sr1—O1—C1	161.01 (19)	Sr1 ⁱⁱⁱ —O3—C5—C4	-109.7 (2)
O6—Sr1—O1—Sr1 ^{iv}	-89.74 (8)	C3—C4—C5—O3	-6.4 (4)
$O2^{i}$ —Sr1—O1—Sr1 ^{iv}	-157.03 (9)	C6—C4—C5—O3	172.7 (3)
O1 ⁱⁱ —Sr1—O1—Sr1 ^{iv}	-20.87 (12)	C3—C4—C5—O4	174.4 (3)
O5—Sr1—O1—Sr1 ^{iv}	52.12 (14)	C6—C4—C5—O4	-6.4 (4)
$O3^{iii}$ —Sr1—O1—Sr1 ^{iv}	108.81 (8)	C3—C4—C6—C7	2.4 (4)
$O5^{iv}$ —Sr1—O1—Sr1 iv	37.06 (7)	C5—C4—C6—C7	-176.8 (3)
N1—Sr1—O1—Sr1 ^{iv}	-167.79 (10)	C2—N1—C7—C6	-1.0 (5)
Sr1 ⁱⁱ —Sr1—O1—Sr1 ^{iv}	-21.60 (12)	Sr1—N1—C7—C6	159.8 (2)
06—Sr1—O5—Sr1 ⁱⁱ	10.55 (10)	C4—C6—C7—N1	-1.6 (5)
0 = 1	12/2 1/2 (11) 12	(1,, (1, 1),, (1, 1),, (1, 1))	

Symmetry codes: (i) x, y, z-1; (ii) x, -y+3/2, z-1/2; (iii) -x+3, -y+1, -z; (iv) x, -y+3/2, z+1/2; (v) x, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O5—H5B···O4 ^{vi}	0.85	1.95	2.759 (3)	158	
O5—H5A···O4 ^{vii}	0.85	1.92	2.730 (3)	160	
O5—H5A···O3 ^{vii}	0.85	2.37	3.051 (3)	137	
O6—H6B···O3 ^{viii}	0.85	2.12	2.958 (3)	169	
O6—H6A····O4 ^{ix}	0.85	2.10	2.833 (3)	144	
Symmetry codes: (vi) $-x+3$, $-y+1$, $-z-1$; (vii) $-x+3$, $y+1/2$, $-z-1/2$; (viii) $-x+2$, $-y+1$, $-z$; (ix) $-x+2$, $y+1/2$, $-z-1/2$.					

Fig. 2

